Collaborative Access to Large Data

SLASH2 - Data Exacell

J. Ray Scott
Pittsburgh Supercomputing Center

(For more info contact: scott@psc.edu)
[Presented, very quickly, by Mike Levine]

Support NSF, NARA, Commonwealth of PA SLASH2 Availability
Search "slash2" on github

Overview & Glossary

- Covering 3 different topics (very quickly!)
 All of potential relevance to a National Data Service.
 - File systems (software)
 - Physical systems w/data storage & other things
 - Use or purpose
- File system software
 - SLASH
 - SLASH2
- Physical systems
 - DSC aka Data Supercell (Storage)
 - DXC aka Data Exacell (Storage & analysis)
 - Bridges (Analysis & storage)
- Purpose
 - Regional data service
 - DIBBs pilot project for data intensive research
 - Production facility for data intensive research

(DSC)

(DXC)

(Bridges)

SLASH2 background & features (file system)

- SLASH: a file system designed to
 - Provide storage shared between multiple HPC systems
 - Serve as a user interface and cache between disk storage systems and a tape-based "mass store" (Cray/SGI DMF)
 - Production support for the 1st NSF Terascale system: Compaq's Quadrics-based AlphaServer
- SLASH2: an elaboration of SLASH designed from the ground up to be:
 - Portable
 - Scalable
 - Interoperable: in both computing platforms served and underlying file systems
 - Serviceable over wide-area networks (issues of latency and consistency)
- SLASH2 is an encapsulating file system (think Lustre)
 - Overall metadata services manage files as chunks on possibly heterogeneous and WAN distributed underlying storage systems
 - Can, and did, incorporate a tape-based mass store.
- Features
 - Multiple file residencies
 - System managed file replication and migration
 - Multiple error checking capabilities
 - Support for striping across underlying storage systems
 - Open source

Production implementations: **D**ata **S**uper**C**ell (5PB raw), **D**ata e**X**a**C**ell (variable), Bridges (14PB raw)

SLASH2 Architecture Overview* (file system)

- Three software components
 - usually run on separate hardware but can all run on one server if performance is not an issue
- MetaData Server (MDS)
 - Provides file attribute and object management
 - Orchestrates data replication
 - Extensive control utility for MDS management msctl
- SLASH2 I/O Daemons (sliod)
 - File servers that store the file content as objects
 - Objects are stored in a local, native file system on the server
 - e.g. EXT3, ZFS, Lustre, NFS, tape-based DMF
 - There are usually many of these in a production system
 - Can utilize space on existing storage systems with SLASH2 as a "user"
 - They are orchestrated by the MDS
- Clients (mount-slash)
 - highly portable FUSE library
 - SLASH2 appears as a mounted file system
 - Data movement is third party

(In production; available via github)

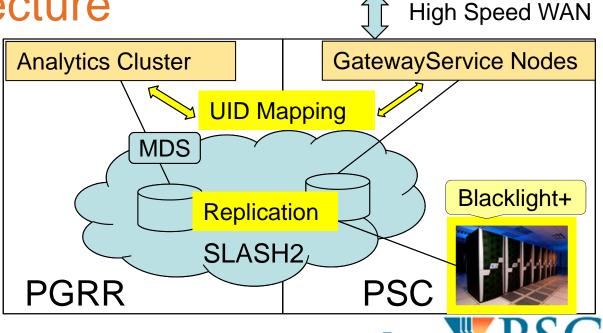
Data SuperCell (DSC): multi-PB regional data service

- Low cost
 - Replaced tape-based archive at same or lower price point
 - Low cost to operate
 - Open source software; commodity hardware
 - Modest foot-print
- Reliability
 - Redundancy
 - Multiple layers of RAID and checksums
 - Remote management reduces cost, repair time & probability of data loss
- Scalability
 - SLASH2 based
 - Allow use of tape or any other technology for underlying storage systems
- Performance: "Faster than tape"
 - 25x transfer rate(/\$)
 - 1/10,000 data access time (100s \rightarrow 10 ms)
 - (Think data-intensive work!)
- Usage: ~3.2PB, ~500M files

DXC: an NSF DIBBs pilot project.

- Data service w/data-analytics & architectural issues
- SLASH2 based + large memory analysis engine(s)
- Improved performance (cf DSC)
 - Next generation hardware
 - IOPS considerations
- System implementation & management additions
 - Database
 - Web
 - Virtual Machines
- Multiple user-partners
 - Provide goals and tests
 - Geographically separated
 - Multiple administrative domains
 - Functional support for workflows

- Users see an improving production environment.
- Example collaborator: <u>P</u>ittsburgh
 <u>G</u>enome <u>R</u>esource <u>R</u>epository
 - Collaborative effort dealing with <u>T</u>he
 <u>C</u>ancer <u>G</u>enome <u>A</u>tlas
 - Using SLASH2 to collect data and support 2-data center access.
 - University of Pittsburgh: Institute for Personalized Medicine (IPM), U. Pitt. Cancer Institute (UPCI), Department of Biomedical Informatics (DBMI), Center for Simulation and Modeling (SaM)
 - University of Pittsburgh Medical Center (UPMC)
 - Pittsburgh Supercomputing Center (PSC)


SLASH2 Features Enabling PGRR

- Wide-area network
 - Resilience (keeps on going!)
 - Robustness (maximize performance)
 - mountable filesystem allowing access to custom TCGA client : genetorrent

- Selective data availability
 - cache data at PSC
 - active data at Pitt
- Local user credentials
 - id mapping

DXC PGRR Architecture

- Features relevant to NDS data access:
 - Managed
 - Protected
 - Active (mountable)
 - Shared

Data Source

