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Theme: High Resolution Data & Model Integration

• Quite revolution in high resolution multi-disciplinary data for 
Earth science: remote sensing, in situ, geophysics, …

• è address new inter-disciplinary questions across space 
and time scales
• Theoretical formulations

• Machine learning

• Hybrid (CPU+GPU) computing

• Methodological and phenomenological outcomes
• Human impact, and natural setting



Critical Zone Observatories Network



IMLCZO uses remote sensing & in-situ observations 
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Laboratory Analysis
Airborne Imaging 
Spectroscopy
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Pure Minerals
1. Can we predict soil 

properties?
2. Which spectral bands 

are important and 
further how important?

3. To what extent can we 
predict?

4. What does the model 
tell us?

Soil Characterization



Characterizing Soil Constituents as an Inverse Problem

• Extract the relationship from the data
• Represent the entire spectral range in the models
• Develop a robust model with limited data sets

4.3 Mathematical Description of the ‘Lasso’ Based Soil Quantification
Framework

4.3.1 Retrieval of Soil Constituents as an Inverse Problem

Let us denote the vector of spectral reflectance of a single pixel (point in the field), for which we

are interested in determining the soil constituents as:

X = {x
1

, x
2

, x
3

, . . . , x
nr}T (4.1)

where, x
r

is the reflectance at each of the individual channels and n
r

is the number of reflectance

channels/spectral channels (for AVIRIS, n
r

= 224).

The set of laboratory measured soil attributes corresponding to the same coincident pixel/point

location in the field, which correlates with the spectral channels or observations is also a vector

denoted by:

Y = {y
1

, y
2

, y
3

, . . . , y
np}T (4.2)

where, y
p

is each of the individual properties (e.g. sand, silt, clay, organic matter, etc) and n
p

is

the total number of properties.

The observed spectral reflectances may be related to the soil constituents on the land surface

through the following model.

X = F(Y ) + v (4.3)

where, F(.) : Y �! X is a functional representation of the radiative transfer equation which maps

the soil attributes quantitatively to the space of spectral reflectances, and v 2 <nr , represents the

error in the observations of spectral reflectances.

We will assume viewing and illumination geometry, atmospheric, path attenuation and scatter-

ing has been accounted for and the observed at sensor radiance values have been transformed to

surface reflectances. Henceforth, all our computations will be in the space of reflectances. The in-

teractions of the incident radiation with the soil surface are di↵erent due to size of particles/voids,

chemical composition involving molecular and atomic interactions and most importantly water

content and organic matter, which are dynamic and change very rapidly. These interactions are

represented by radiative transfer function F(.) : Y �! X. This implies that same quantitative

values of soil texture (% sand, silt and clay with same particle size and chemical composition) may
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With the filtered set of paired observationsN , we assume that the explanatory inverse predictive

model for the soil constituents Y , given the spectral observation X, is well represented by the

following linear model:

Y = CX + e (4.6)

where C 2 <np⇥nr is a matrix of the coe�cients or weights that combines with the spectral

reflectances and e 2 <np denotes the error vector. If we assume e ⇡ zero mean error, then given

an estimate of the matrix of coe�cients Ĉ, the conditional expectation of the soil constituents X̂

is given by:

Ŷ = E[Y |Ĉ] = ĈX (4.7)

where Ŷ 2 <np , X 2 <nr and Ĉ 2 <np⇥nr .

Further we make the following assumptions involving the observations and the span of the

explanatory variables in the spectral domain for making the problem well posed and the algorithm

computationally stable:

1. Generally we have a small set of observations compared to the spectral dimension, (i.e.

n
r

� N) to establish the relationship between explanatory variables and soil constituents.

Essentially we are dealing with a ‘sparse’ problem.

2. The explanatory or ‘sparse’ set of predictors is a subset of the entire spectral range, with

appropriate representation of wavelengths as predictors from the entire spectral range.

3. Spectral domain decomposition is necessary to ensure that the entire spectra is represented

in the model in an automatic algorithm.

4. Designing an an ensemble bootstrap based framework incorporating an appropriate regu-

larization scheme with domain decomposition facilitates the proper shrinkage, selection and

representation of predictors across the entire spectral range in a robust way.

Let k be a subset of the predictor bands representing the full spectral range which is su�cient to

model the soil constituent with the maximum information from the spectral domain, that is n
k

⇢ n
r

.
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Characterizing Fine Resolution Soil Constituent

band1, band2, band 3,…, band n

sand, silt, clay, SOM, Ca, Mg,… 
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Machine Learning: Soil Texture from Hyperspectral Data
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originally used to identify them during data collection and
laboratory analysis, and (b) model predicted textural results at
7.6m original airborne AVIRIS resolution. Fig. 8(c) through
8(e) show the model predicted textural results using upscale
resolution data at 15.2 m, 30.4 m and 60.8 m respectively.

1) Effect of coarsening the spatial resolution on model
prediction results for soil texture and organic matter?: From
the USDA soil texture triangles (Fig. 8) it is found that the
laboratory and modeled soil classification results agree well.
The spread of the data in different classes is the same for
both observed and modeled results and across the data at the
various spatial resolutions. Moreover, inspection of the data
labels and comparison with the observed data reveals that
most of them are classified correctly, and we categorized the
classifications as ‘Exact Match’, ‘Close Classification’, and
‘Incorrect Classification’ defined as follows.

1) If the observed and the model predicted soil properties
belong to the same USDA soil texture class, we call it
a coincident match or exact classification.

2) If a soil property does not fall in the same category
we compute the deviation in the observed and model
predicted values for sand and clay percentages for the
sample and the total deviation as:

�

sand%

= |�observed

sand%

��

predicted

sand%

|

�

clay%

= |�observed

clay%

��

predicted

clay%

|

�

total%

= �

sand%

+�

clay%

3) If the total deviation (�
total%

) is less than or equal to
25% we call it a ‘close’ match, otherwise we call it an
‘incorrect’ classification.

The results of the classification analysis for all the different
spatial resolutions are presented in Table. III. The results
indicate that across all the different spatial resolutions (except
the large 90m pixel resolution) about 40 - 47 % of the samples
are classified exactly and about 28 - 41% samples indicate
close classification with the USDA soil texture classes. These
results show us that the ensemble lasso method performs
well not only for individual models but also for all the three
different soil texture models combined together.

B. Model Structure of Soil Constituents at Different Spatial
Resolutions

The model structure is investigated in terms of the explana-
tory predictor variables (wavelengths) for the different soil
constituents at all of the eight different spatial resolutions
(namely 7.6m, 10m, 15.2m, 20m, 30.4m, 45m, 60.8m and
90m) used for the study. For a particular soil constituent it
is interesting to know the forms of inter-relationships between
predictor bands of the models as we upscale the data. Figure
9 shows the relationships between model structure (predictor
bands) at different spatial resolutions for clay, silt, sand and
soil organic matter. It Illustrates which bands participates
in the prediction model (eq. 9) across different resolutions.

When a band participates in at least 3 different resolutions
it is identified in Fig. 9(a). Similarly when it participates
in atleast 4 different resolutions it is identified in Fig. 9(b).
Figs. 9(c) and (d) represent participation in 5 and 7 different
resolutions. It is found that there are a number of bands which
emerge as important predictors across most of the spatial
resolutions. A number of bands which are important predictor
for not one constituent but for a couple or all of the four
constituents. The model structure for soil chemical constituents
calcium, magnesium, potassium and aluminum show similar
patterns [see supplementary info. fig. S2 (a) - (d)]. The bands
which are predictor variables for the combination of other
spatial resolutions for the textural and chemical properties are
presented in the supplementary material [see figs. S3 and S4].

It is found that the number of common predictors across
many different spatial resolutions are higher for the chemical
constituents than the soil texture models. The summary figure
for the importance of wavelengths across different scales
for textural as well as chemical constituents is presented in
fig.10. We find that wavelengths in the blue region of the
spectrum (360 - 460 nm) is important for all the textural
properties and chemical constituents. The empirical models
for the prediction of the different soil constituents are based
on spectral characteristics of pure elements, compounds and
radicals as well as the intercorrelations between different
wavelengths as soil is a complex mixture. Even in an automatic
model development framework we have found that some of
the pure spectroscopic characteristics are well pronounced in
the models. For the clay models the 2.2µm feature which is a
hydroxyl absorption feature and is a signature of clay minerals
kaolinite and montmorillonite is found to be a predictor across
the models for all the spatial resolutions. Some of the other
features for these minerals such as the 1.4 µm water absorption
is captured across some of the spatial resolutions. Similarly
for the chemicals a close examination [fig. 10] reveals that the
bands at 1.1, 1.4 and 2.2 µm are selected as predictor bands for
calcium and magnesium across many of the spatial resolutions.
These band are associated with and are specific signatures
of Ca-OH and Mg-OH. Thus it may be concluded that the
empirical modeling framework selects the important spectral
signatures associated with a chemical constituent or a textural
property as well as utilizes an underlying correlation structure
among various bands across upscaled spatial resolutions for
quantification of the soil constituents. The results of section
IV - A and B indicate that the model results are consistent
and establishes the potential applicability of the method across
different spatial resolutions (from airborne to space borne) for
quantification of soil texture.

C. Spatial Distribution of Soil Constituents Across the Land-
scape at Different Resolutions

1) Change in prediction maps of soil constituents over
large areas due to coarsening spatial resolutions?: The lasso
prediction models developed at different spatial resolutions
(for soil texture and organic matter) were applied on a pixel
by pixel basis for obtaining quantitative spatial maps of the
constituents over the entire floodplain. These maps help us to
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Results obtained by application of prediction 
models across the entire landscape about 

700km2 in area at 7.5 m resolution
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Tree Species Classification Using Hyperspectral Data

12

Canopy Height 
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Tree Classifications
American Basswood
American Buckeye
American Elm
American Hazelnut
American Sycamore
Black Hickory
Blue Beech
Bur Oak
Eastern Hemlock
Eastern White Cedar
Hackberry
Jack Pine
Paper Birch
Pitch Pine
Planer tree
Pumpkin Ash
Rock Elm
Shingle Oak
Silver Maple
Slippery Elm
Southern Bald Cypress
Sweetgum
Water Locust
White Oak
Wild Black Cherry
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Study Site: Allerton Park
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LAD Profiles for Several Trees
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ECOHYDROLOGIC DYNAMICS

Drewry et al., JGR-BGS, 2010a,b
Quijano et al, WRR, 2012, 2013
Le & Kumar, GRL, 2015

Le et al., Env. Mod. & Soft., 2015
Le & Kumar, WRR, 2017
Woo & Kumar, WRR, 2017
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doi: 10.1002/2013GL059114



No
rth

ing
 (m

)
 Easting (m)

Micro-topographic controls



Organic
Pool Inorganic Pool

Photosynthesis;
CO2, energy 
and water 

fluxes; 
Surface & 

sub-surface 
coupling; root 
water uptake

Dhara Model

High Resolution (~m) 
explicit 3-D transport + 
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model 

Dhara (sanskrit): earth, flow



Dhara Model

High Resolution (~m) 
explicit 3-D transport + 
Multi-layer vegetation 
model 

Dhara (sanskrit): earth, flow





MOISTURE DYNAMICS
Le & Kumar, GRL, 2015
Le et al., Env. Mod. & Soft., 2015
Le & Kumar, WRR, 2017





o Computation:
• 10s – 100s billion unknowns

• Mix task and data parallelisms

o Domain decompositions and 
communications

o Blue Waters supercomputer 
(peta-scale):
• Cray X7 nodes

• Kepler GPUs

• CUDA-Aware (Direct 
communication GPU to GPU)

Scaling up computation for large basin

40x60 km2





Flooding Simulation Results
• Input data

• LiDAR DEM (raster), 2 m resolution

• Inflow starts from the upstream river
• Free outflow in the downstream
• Discharge, run untill steady state
• Output

• Water Surface elevation
• Flow direction

Bankfull Discharge 10-Year Flood Discharge 100-Year Flood Discharge
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SEPTEMBER 2015 VOLUME 53 NUMBER 9 IGRSD2 (ISSN 0196-2892)

High-resolution spatial prediction map of soil texture shown as tricolor RGB composite for percentages of sand, silt, and clay (left) and soil organic matter content
(right) for Bird’s Point New Madrid Floodway. Large-scale legacy landscape features of the Mississippi River are clearly observable.

FEBRUARY 2017 VOLUME 55 NUMBER 2 IGRSD2 (ISSN 0196-2892)

(Top left) True color composite of CASI hyperspectral imagery. (Top right) “Pit-free” CHM generated using the program LAStools. (Bottom left)
Polygons generated using the watershed delineation algorithm for tree crown detection. (Bottom right) Irregular-shaped polygon converted

into simple circular geometry representing the tree canopy tops.
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(Collaborations welcome!)


