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FROM SBEM IMAGERY TO GRAPHS

• Serial Blockface Electron 
Microscopy generates 
~terabytes of data (and 
àpetabytes soon)

• Volumes must be coded 
(neuron, glial cell, blood 
vessels) and neurons 
isolated

– Cell morphology/structure 
(amacrine, bipolar, ganglion)

• Synaptic connections 
identified and used to build a 
network of neurons

An Unbiased Taxonomy of Cell Types. Classification of CN cell types has mostly relied upon LM techniques, 
predominantly Nissl stains that mark most neurons in a given tissue section but do not reveal dendrite 
structure, and Golgi stain, intracellular fills and tract tracing labels that can reveal dendrite structure but 
incompletely label neuron populations. From these combined approaches, a general classification of ~14 cell 
types has emerged for the entire CN (Fig. b1) based primarily on studies of cat and rodents3,4,23. Certain 
regions of the CN, especially the dorsal VCN, granule cell domains and deep DCN are not well explored, so 
new cell types will likely be discovered in those territories. Even within the best-accepted bushy cell class, 
subdivided into globular and spherical bushy cells, additional subpopulations are suggested based on 
qualitative assessment of dendritic tree structure2,24. We expect the stellate (aka multipolar) cell class, in 
particular, to be subdivided further because its defining characteristic (dendrites extending in variable 
directions) is a rather general feature of many neurons and existing subclasses are not very homogeneous. 
We will then build on existing atlasing efforts25 with new techniques and establish cellular coordinates in 
Waxholm space, which relates brain to skull coordinates via MRI as a consensus reference space for the 
mouse brain26. 
 
The mouse CN may contain up to 25,000 neurons (estimated from27), exclusive of granule cells. In order to 
classify cell types methodically, unbiased methods must be used to sample the tissue. Electron microscopy 
images report all cells and their membrane-enclosed processes. Segmentation and 3D reconstruction, given 

the nanoscale image resolution, do not miss fine 
features such as small cellular processes. By 
employing serial blockface scanning electron 
microscopy (SBEM), a relatively new approach to 
reconstructing neural tissue28, we avoid problems of 
tissue distortion following sectioning and alignment of 
structures across tissue sections. This remarkably 
precise reconstruction of the 3D shape of neurons is 
also a great opportunity to leverage and push state-of-
the-art computer vision and machine learning 
techniques for doing shape analysis and classification 
of 3D cellular models. The molecular identification of 
CN neurons has lagged behind other brain areas, 
especially for developmental genetics29. Numerous 
genetic tools exist for mapping CN classes, though 
many remain poorly characterized. We will use new 
technologies (CRISPR/Cas930) to develop genetic tools 
for intersectional labeling31 of unique CN classes and 
subclasses. Genetically tagging these unique cell 
groups and utilizing tissue clearing methods32,33 along 
with large volume fluorescence imaging, will facilitate 
their integration into morphological and functional 

classifications. Indeed, the emerging consensus is that structural classes need to be combined with 
molecular and functional classes34. We begin to systematically fill this gap in Aim 1. High-resolution 
connectome analysis has been pursued primarily using the neural network of C. elegans35,36, where 
researchers have been successful in identifying hierarchies of neurons. In Aim 2, we will extend current work 
by also constructing and analyzing directed and weighted graphs that incorporate annotations of synaptic 
location on the postsynaptic surface to determine different flow capacities for information transformation. Our 
goal is to extract topologies of parallel processing networks in the CN that form the basis for neural 
computation at higher auditory centers. We propose large-scale neural models to provide functional 
classification of cell types. The state of the art for neural models is to include morphologically accurate 
reconstructions and biologically based kinetic models of channels and receptors 37-39. These rely on limited 
numbers of LM reconstructions, which lack resolution, so poorly specify synaptic contacts. Our approach 
advances the state of the art by incorporating an unprecedented level of structural representation of cells, 
their network connections and detailed representations of channels. Parallel completion of these four modes 
of analysis, their integration by modern statistical methods and application to tissue altered by NIHL (Aim 3) 
is indicated in figure b2. 

 
Figure b2. The project at-a-glance. Aim 1: SBEM image volumes 
are collected and cells are segmented into 3D models and classified. 
Image is BC with ANF endbulbs inputs from small VCN test volume. 
Separately, cells are classified by molecular phenotype. 3D neuron 
models (lower right) are converted to skeletons, graphs and modeling 
code for connectome and functional studies in Aim 2. Aim 3: All 
modes converge (red oval) using multiview statistical approaches for 
cell classification. In year 5, a CN subvolume in animals with NIHL 
will be studied. 
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networks in health and noise-induced hearing loss (3 animals of each case).  Image resolution of a test VCN 
volume (28 BCs, 3 multipolar cells) is illustrated in figure d2. 

Experiment 1, Step 2: Image segmentation follows a semi-automated pipeline. Each image volume is  
estimated to contain ~6,500 complete cell bodies; 75% having complete dendritic trees. Teams of 

undergraduates who are enrolled in a course 
on connectomics that we offer each semester 
or through paid work over breaks and 
summers, skeletonize dendrites and 
unmyelinated axons using existing software 
(Knossos). Synapses are located at the ends 
of axonal skeleton branches. Skeletons are 
used to extract cylinders around each branch, 
for processing under guidance from our 
customized software (CellSeeker, 
ProcessSeeker) and using machine learning 
tools (ilastik software) to generate probability 
maps for cell membranes. Resulting 3D 
models are corrected manually (Seg3D, Univ. 
Utah; Fig. d3A). Myelinated axons are 
extracted using a pipeline of standard image 
processing algorithms, including a final 
watershed algorithm (Seg3D; Fig. d3B). Cells 
are annotated by major part (e.g. soma, 

tertiary dendrite) and locations of synaptic contact. We will incorporate any published or available advances 
in autosegmentation during the program period. We are currently training 25 students to be group leaders of 

a 300-student workforce, which will diminish in size as 
procedures become increasingly automated. 
Skeletons and 3D models are easily written into hoc 
code format using custom code for modeling (Aim 2). 
Variation in BC morphology is evident even in our 
small test volume (Fig. d4). 

Experiment 1, Step 3: Classify neuron morphology 
by human and automated methods. Human 
classification takes advantage of our development of 
a user interface to an immersive virtual reality (IVR) 
system, called BrainTrek43, to investigate high-
resolution 3D models of neurons. In brief, 8 human 
viewers (4 groups of 2 people) classify a 500-cell 
subset randomly selected from each image volume 
(~6,500 cells/ image volume). A reference cell is 

randomly selected and all viewers rate similarity of all cells to that reference (1-5 scale). A different reference 
cell is selected, after all observers have completed a round of classification, for each of 10 rounds. Data from 
all observers are centered and normalized. A similarity weight between each two cells is determined by 
Pearson’s correlation coefficient and a weighted graph of order 500 is established. This similarity matrix is 
processed by our QCM algorithm95 to determine subgraphs of high internal density and described in a 
hierarchical tree. The Max-Flow-Min-Cut algorithm is applied to describe cell clustering. All 8 observers’ 

clusters are combined to establish a new similarity 
matrix based on majority vote. A random walk/heat 
kernel algorithm is applied to normalize this new 
consensus graph and clustering analysis is repeated 
for the final output. Results for a test data set of 50 
neurons in our archive from the developing auditory 
brainstem indicate the reliability of these procedures 
(Fig. d5). The dataset of 3D models and their 
classification enter a MySQL database for the 

 
Figure d4. Four bushy cells from our VCN test SBEM volume, which 
contained 28 bushy cell and 3 multipolar cell bodies. Note the variation in 
dendritic structure even within this small sample. All cell bodies were 
contacted by multiple end bulb terminals. 

 
Figure d2. Test SBEM image block from the VCN auditory nerve root region. A. 
Myelinated nerve fiber fascicles run through clusters of mostly globular bushy 
but also multipolar cells; n, nucleus; cb, cell body; f, axon fascicle; c, capillary. B. 
Closeup of GBC cb from panel A shows nucleus (n) and nearby endoplasmic 
reticulum (er); ax, axon. C. Closeup of endbulb input in panel B reveals synaptic 
vesicles (sv), synapses (arrows) and mitochondria (m), illustrating the capability 
of this approach to reveal nanoscale structures and circuit level arrangement of 
neurons. Scale bars: A, 10 µm; B, 2 µm; C, 1 µm. 

 
Figure d3. A. Semi-automated extraction of cell bodies from test VCN 
image volume using custom software (CellSeeker) to manage image 
processing pipeline using ilastik procedures. B. Scripts in Seg3D 
automatically segment myelinated axons (a few fascicles are colored) 
and capillaries (purple). Each object is saved with annotation (cell part 
name) to our database. Orientation arrows in B are 10 µm. 
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CONNECTOMICS - NEURON STRUCTURE AND 
CONNECTIONS
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NETWORK ANALYTICS

Graphs can model data well but

– Are they faithful representations?

– What do we consider ‘important’ 
structures?

• Are there important vertices or groups of 
vertices?

– In the context of connectomics, what are 
the relationships to biological structures?

• Can these analytic processes provide useful 
insights?
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NETWORK PROPERTIES

Centrality
– Degree

• Number of edges incident at a node

– Closeness
• Closeness is based on the inverse of the path length of each node to every other node in the 

network.

– Betweenness
• Counts the number of shortest paths between i and k that node j resides on.

Matrix based methods
– Analysis of adjacency, weight, Laplacian matrices, spectral methods
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STRUCTURE WITHIN NETWORKS
Structure may also be found in ‘communities’ or ‘clusters’ of nodes

One definition of a community/cluster: Clique
– Vertices are all adjacent to each other

• Strict definition, 
• finding all or maximal clique NP-complete problem

– Density = 1
– Other names: n-clique, n-clan, n-club, k-plex

Density of a subgraph C with vertex set V(C) and edge set E(C) 
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2
– Number of complete “triangles

Idea: Search for ‘almost’ cliques as well as relations between them
– Use density or weighted density
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CLIQUE/COMMUNITY DETECTION

For our work we employ a modified version of the Quasi-Clique Merger method (QCM)

– This algorithm constructs ‘quasi-cliques’ by adding edges to existing collections of nodes 
and edges (a subgraph) and comparing the density of the new collection to that of the 
old

– QCM
• Examines graph structure at multiple resolutions
• Builds a tree with community cuts at multiple heights

– Agglomerative
• Not proper tree as nodes may lie in multiple branches

Modified method in the current work builds on this using similarity measures in 
combination with graph theory to detect dense intra-node connectivity as well as inter-
community connectivity (e.g. bi-partite structures)

Qi, X., Tang, W., Wu, Y., Guo, G., Fuller, E., & Zhang, C. Q. (2014). 
Optimal local community detection in social networks based on density 
drop of subgraphs. Pattern Recognition Letters, 36, 46-53.

Payne, S., Fuller, E., Zhang, CQ. QCMp: An Unsupervised Network Community 
Detection Method. In preparation.

Ou, Y., & Zhang, C. (2007). A new multimembership clustering method. Journal of 
Industrial and Management Optimization, 3(4), 619.
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QCM

Similar connectivity to other regions

Similar connectivity within community 
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Gravitate to 
communities

Map to 
similarity

QCM-FPZ 
algorithm

Detect 
Communities

edge
cut

Adjacency/weight information

Ex: Network Properties

Cosine similarity of rows
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MAMMAL SENSORY NETWORKS

• The optical network
• Retinal neurons on the back 

of the eye collect signals from 
rod and cone neurons and 
feed to ganglion cell 
‘collectors’
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THE MOUSE RETINA AND IPL
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Figure 1. Identification of S- and M-cones. (A) Scheme showing vertical section through the mouse retina. (B) Volume-reconstructed cones and all

CBC4 cells. (C) Cone pedicles (grey) with CBC9s. BC soma localization is indicated by colored dots. Dashed outlines indicate incomplete cones. (D)
Same as in C, but with putative S-cones (blue) and M-cones (green) highlighted. Unidentified cones are shown in grey. Insets indicate the location of

Figure 1 continued on next page

Behrens et al. eLife 2016;5:e20041. DOI: 10.7554/eLife.20041 3 of 20

Research article Computational and Systems Biology Neuroscience

• Retina composed of multiple neuron types
– Rods/cones react to light
– Signal along bipolar cells to ganglion cells
– Ganglion cells ‘integrate’ signals from 

multple columnar units
– Amacrine cells in between connect units and 

mostly inhibit signaling
• Inner Plexiform Layer

– Lies between rod/cone layer (back of eye) 
and ganglion cell layer (center of eye)

– ‘mesh’ of dendrites and axon processes from 
• Bipolar cells connected to rods/cones on one 

end and ganglion cells on the other
• Amacrine cell networks interacting with these 

circuits

*adapted from Behrens et al 2016
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NETWORKS FROM THE IPL
SBEM dataset e2006 published by Helmstaedter et 
al. (2013)

– Volume from inner plexiform layer of mouse retina
– 1123 neurons isolated, cell type identified by 

structural examination 
• Ganglion, Amacrine, Cone Bipolar, Rod Bipolar Cells
• Mueller Glia

– 1076 connected cells
– Total volume 114#$ x 80#$ x 132#$

For our work we use data for all connected cells
– 1076 nodes
– 89,991 weighted edges (sum of areas between 

unique node pairs)
– Tools developed in Matlab for visualization, data 

analysis

#$
#$

#$

Data visualized from 
Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., 
& Denk, W. (2013). Connectomic reconstruction of the inner plexiform 
layer in the mouse retina. Nature, 500(7461), 168.
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QCM ANALYSIS OF THE IPL CONNECTOME
We applied the modified version of 
QCM to 1076x1076 weighted IPL 
connectivity data by 

– Computing similarity matrix from 
network information (heat kernel, 
cosine similarity of nodes)

– Apply QCM to similarity matrix 
derived from this 

• Developed 203 communities
• Per Community

– Mean 5.3 cells, median 4 cells per 
– Range 2 to 21 neurons (non-glial)

Result is a 203x203 intermodular 
connectivity matrix
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BIOLOGICAL INSIGHTS FROM ANALYSIS

Connected communities identified by QCM reveal 
low level modular structure as well as hierarchical 
structure related to wide field connectivity cells 
calls starburst amacrine cells and collector 
ganglion cell networks

Red nodes (21 of 203) 
denote most highly connected communities, ‘network 
hubs’

64.7% of intermodular connectivity (summed contact 
area)

*visualization using divided edge bundling
Selassie, D., Heller, B., & Heer, J. (2011). Divided edge 
bundling for  directional network data. IEEE Transactions on 
Visualization and Computer Graphics, 17(12), 2354-2363.
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BIOLOGICAL INSIGHTS FROM ANALYSIS

Other modules:

Groups of 
bipolar cells 
synapsing onto 
amacrine narrow 
cells
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BIOLOGICAL INSIGHTS FROM ANALYSIS

Select all communities with amacrine 
narrow cells

– Present in 93 of the 203 

Black = no amacrine narrow cells

Perform second QCM process on the 
93 using number of each type of 
amacrine narrow 

– Define vector for each community
– Compute similarity, run QCM, cut

Found second order collection of 8 
groups of communities
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BIOLOGICAL INSIGHTS FROM ANALYSIS
Modules with amacrine narrow aligned by subtype as 
shown

– Vertical columns = subtypes as in (Helmstaedter et al, 
2013)

– Each row one of 93 

Eight communities identified by QCM from top to bottom

Group 1 (purple)  
– Each module has exactly one type 24 (AII) cell.
– 3-5 cells in total 
– Expected composition of a module is one type 24, one or 

two rod bipolar, one or two OFF-cone bipolar.
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BIOLOGICAL INSIGHTS FROM ANALYSIS

Group 1 amacrine narrow communities
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BIOLOGICAL INSIGHTS FROM ANALYSIS

Group 1 amacrine 
narrow side view

community 39
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PROBLEMS AND CHALLENGES

• Ground truth?

– No ‘best’ clustering algorithm

• Scaling

– 1000 neurons to 10k, 100k, to ???

– Fly: 250k with 10^7 connections

– Mouse: 70,000,000 with 10^12 connections

– Human: ~10^11 with 10^15 connections

• HHMI/Janelia fly connectome 

– Porting to neo4j

– Recoding for connectivity + metadata (arbor, cell type, strength…)
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QUESTIONS?

• Thanks
• ef@math.wvu.edu or ejfuller@gmail.com

mailto:ef@math.wvu.edu
mailto:ejfuller@gmail.com

